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Abstract
Formulae expressing explicitly the Jacobi coefficients of a general-order
derivative (integral) of an infinitely differentiable function in terms of its
original expansion coefficients, and formulae for the derivatives (integrals)
of Jacobi polynomials in terms of Jacobi polynomials themselves are stated.
A formula for the Jacobi coefficients of the moments of one single Jacobi
polynomial of certain degree is proved. Another formula for the Jacobi
coefficients of the moments of a general-order derivative of an infinitely
differentiable function in terms of its original expanded coefficients is also
given. A simple approach in order to construct and solve recursively for
the connection coefficients between Jacobi–Jacobi polynomials is described.
Explicit formulae for these coefficients between ultraspherical and Jacobi
polynomials are deduced, of which the Chebyshev polynomials of the first
and second kinds and Legendre polynomials are important special cases. Two
analytical formulae for the connection coefficients between Laguerre–Jacobi
and Hermite–Jacobi are developed.

PACS number: 02.30.Gp
Mathematics Subject Classification: 33C45, 33A50, 42C10, 65L05, 65L10

1. Introduction

The main feature of spectral methods is to take various orthogonal systems of infinitely
differentiable global functions as trial functions. Different trial functions lead to different
spectral approximations; for instance, trigonometric polynomials for periodic problems,
Chebyshev, Legendre, ultraspherical and Jacobi polynomials for non-periodic problems,
Laguerre polynomials for problems on the half line, and Hermite polynomials for problems on
the whole line. The fascinating merit of spectral methods is their high accuracy, the so-called
convergence of ‘infinite order’.
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Classical orthogonal polynomials are used successfully and extensively for the numerical
solution of differential equations in spectral and pseudospectral methods (see, for instance,
Ben-Yu (1998a, 1998b), Coutsias et al (1996), Doha (1990, 2000), Doha and Helal (1997),
Doha and Al-Kholi (2001), Doha and Abd-Elhameed (2002), Haidvogel and Zang (1979) and
Siyyam and Syam (1997)). In particular, Lewanowicz (1986, 1991, 1992) has developed three
different algorithms for constructing recurrence relations for the expansion coefficients in
Jacobi series solutions for linear ordinary differential equations with polynomial coefficients.
Solutions of such recurrence relations enable one to obtain the spectral approximations in
Jacobi series expansions for the differential equations under consideration.

It is well known (Canuto et al 1998) that the eigenfunctions of certain singular Sturm–
Liouville problems allow the approximation of function in C∞[a, b] whose truncation error
approaches zero faster than any finite negative power of the number of basis functions (retained
modes) used in the approximation, as the number (order of truncation N) tends to infinity. The
importance of Sturm–Liouville problems for spectral methods lies in the fact that the spectral
approximation of the solution of a differential equation is usually regarded as a finite expansion
of eigenfunctions of a suitable Sturm–Liouville problem.

It is proved that the Jacobi polynomials are precisely the only polynomials arising as
eigenfunctions of a singular Sturm–Liouville problem (cf Canuto et al (1998), section 9.2).
This class of polynomials comprises all the polynomial solutions to singular Sturm–Liouville
problems on [−1, 1]. Chebyshev, Legendre and ultraspherical polynomials are particular cases
of the Jacobi polynomials. These polynomials have been used in both the solution of boundary
value problems (Fox and Parker 1972, Gottlieb and Orszag 1997) and in computational fluid
dynamics (Canuto et al 1998, Peyret 2002, Voigt et al 1984). In most of these applications
use is made of formulae relating the expansion coefficients of derivatives appearing in the
differential equation to those of the function itself. This process results in an algebraic system
or a system of differential equations for the expansion coefficients of the solution which then
must be solved.

Formulae for the expansion coefficients of a general-order derivative of an infinitely
differentiable function in terms of those of the function are available for expansions in
Chebyshev (Karageorghis 1988a), Legendre (Phillips 1988), ultraspherical (Karageorghis and
Phillips 1989, 1992, Doha 1991), Jacobi (Doha 2002a), Hermite (Doha 2003c) and Laguerre
(Doha 2003b) polynomials.

An alternative approach to differentiating solution expansions is to integrate the
differential equation q times, where q is the order of the equation. An advantage of
this approach is that the general equation in the algebraic system then contains a finite
number of terms. Phillips and Karageorghis (1990) and Doha (2002b) have followed this
approach to obtain a formula relating the expansion coefficients of an infinitely differentiable
function that have been integrated an arbitrary number of times in terms of the expansion
coefficients of the function when the expansion functions are ultraspherical polynomials. The
corresponding formula when the expansion functions are Jacobi polynomials is given in Doha
(2003a).

A more general situation which often arises in the numerical solution of differential
equations with polynomial coefficients in spectral and pseudospectral methods is the
evaluation of the expansion coefficients of the moments of high-order derivatives of infinitely
differentiable functions. A formula for the shifted Chebyshev coefficients of the moments
of a general-order derivative of an infinitely differentiable function is given in Karageorghis
(1988b). Corresponding results for Chebyshev polynomials of the first and second kinds,
Legendre, ultraspherical, Hermite and Laguerre polynomials are given in Doha (1994), Doha
and El-Soubhy (1995) and Doha (1998, 2003c, 2003b) respectively.
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Up to now, and to the best of our knowledge, many formulae corresponding to those
mentioned previously are unknown and are traceless in the literature for the Jacobi expansions.
This partially motivates our interest in such polynomials. Another motivation is that the
theoretical and numerical analysis of numerous physical and mathematical problems very often
requires the expansion of an arbitrary polynomial or the expansion of an arbitrary function
with its derivatives and moments into a set of orthogonal polynomials. This is particularly true
for Jacobi polynomials. To be precise, the Laguerre and Jacobi polynomials, which virtually
cover all the classical orthogonal polynomials, play an important role in various physical
applications. In many cases, the solutions of the Schrödinger equation for simple systems
are expressed directly in terms of such polynomials; for example, hydrogen-like functions via
Laguerre polynomials, rotator functions via the Jacobi polynomials, etc. Since the Hermite
and Bessel polynomials are particular cases of the Laguerre polynomials, and the Chebyshev
of the first and second kinds, the Legendre and ultraspherical polynomials are particular
cases of the Jacobi polynomials, the numbers of such examples may be easily extended.
The Laguerre and Jacobi polynomials also play an important role in approximate variational
solutions of complex many-electron systems, because basis functions in variational methods
are frequently connected with these two classes of special functions. This also motivates our
interest in such polynomials. Another motivation is, once we give the formulae concerning
the Jacobi polynomials, corresponding to those obtained by Doha (1994) for Chebyshev, Doha
and El-Soubhy (1995) for Legendre, Doha (1998, 2002b) for ultraspherical, Doha (2003c)
for Hermite and Doha (2003b) for Laguerre polynomials, the subject of classical continuous
cases will be closed.

The paper is organized as follows. In section 2, we give some relevant properties of
Jacobi polynomials, and state without proofs four theorems from Doha (2002a) and Doha
(2003a). Two of them give explicitly two formulae for the coefficients of a general-order
derivative (integral) of an expansion in Jacobi polynomials in terms of the coefficients of
the original expansion; while the other two express explicitly formulae for the derivatives
(integrals) of Jacobi polynomials of any degree and for any order in terms of the Jacobi
polynomials themselves. In section 3, we prove a theorem which gives the Jacobi coefficients
of the moments of one single Jacobi polynomial of any degree. Another theorem which
expresses the Jacobi coefficients of the moments of a general-order derivative of an infinitely
differentiable function in terms of its Jacobi coefficients is proved in section 4. Results for
ultraspherical, Chebyshev of the first and second kinds and Legendre polynomials are deduced
as particular cases of Jacobi polynomials. A simple approach in order to build and solve
recursively for the connection coefficients between two different families of Jacobi orthogonal
polynomials is described in section 5. Corresponding results for ultraspherical polynomials
and their important special cases are noted. Formulae for the connection coefficients between
Laguerre–Jacobi and Hermite–Jacobi are also developed. An application for solving ordinary
differential equations with varying coefficients, by reducing them to recurrence relations in
the expansion coefficients of the solution, is given in section 6.

2. Some properties of Jacobi polynomials

The Jacobi polynomials associated with the real parameters (α > −1, β > −1) (see Szegö
(1985)), are a sequence of polynomialsP

(α,β)
n (x) (n = 0, 1, 2, . . .), each respectively of degree

n, satisfying the orthogonality relation
∫ 1

−1
(1 − x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx =

{
0 m �= n

hn m = n
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where

hn = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
. (1)

These polynomials are eigenfunctions of the following singular Sturm–Liouville equation:

(1 − x2)φ′′(x) + [β − α − (α + β + 2)x]φ′(x) + n(n + α + β + 1)φ(x) = 0.

A consequence of this is that spectral accuracy can be achieved for expansions in Jacobi
polynomials. For our present purposes it is convenient to standardize the Jacobi polynomials
so that

P (α,β)
n (1) = �(n + α + 1)

n!�(α + 1)
P (α,β)

n (−1) = (−1)n�(n + β + 1)

n!�(β + 1)
.

In this form the polynomials may be generated using the standard recurrence relation of
Jacobi polynomials starting from P

(α,β)

0 (x) = 1 and P
(α,β)

1 (x) = 1
2 [α − β + (λ + 1)x], or

obtained from Rodrigue’s formula

P (α,β)
n (x) = (−1)n

2nn!
(1 − x)−α(1 + x)−βDn[(1 − x)α+n(1 + x)β+n]

where

λ = α + β + 1 D ≡ d

dx
.

The ultraspherical polynomials are Jacobi polynomials with α = β and are thus a subclass
of the Jacobi polynomials. It is convenient to weigh the ultraspherical polynomials so that

C(α)
n (x) = n!�

(
α + 1

2

)
�

(
n + α + 1

2

)P
(α− 1

2 ,α− 1
2 )

n (x) (2)

which gives C(α)
n (1) = 1 (n = 0, 1, 2, . . .); this is not the usual standardization, but has the

desirable properties that C(0)
n (x) = Tn(x), C

( 1
2 )

n (x) = Pn(x), and C(1)
n (x) = (1/(n + 1))Un(x),

where Tn(x), Un(x) and Pn(x) are Chebyshev polynomials of the first and second kinds and
Legendre polynomials respectively.

Let f (x) be an infinitely differentiable function defined on [−1, 1], then we can write

f (x) =
∞∑

n=0

anP
(α,β)
n (x) (3)

and for the qth derivative of f (x),

f (q)(x) =
∞∑

n=0

a(q)
n P (α,β)

n (x) a(0)
n = an (4)

it is possible to derive a recurrence relation involving the Jacobi coefficients of successive
derivatives of f (x) . Let us write

d

dx

∞∑
n=0

a(q−1)
n P (α,β)

n (x) =
∞∑

n=0

a(q)
n P (α,β)

n (x)

then use of the identity

P (α,β)
n (x) = 2

(n + λ − 1)(2n + λ − 1)3

[
(n + λ − 1)2(2n + λ − 1)DP

(α,β)

n+1 (x)

+ (α − β)(n + λ − 1)(2n + λ)DP (α,β)
n (x)

− (n + α)(n + β)(2n + λ + 1)DP
(α,β)

n−1 (x)
]

n � 1 (5)
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leads to the recurrence relation
(n + λ − 1)

(2n + λ − 1)(2n + λ − 2)
a

(q)

n−1 +
(α − β)

(2n + λ + 1)(2n + λ − 1)
a(q)

n

− (n + α + 1)(n + β + 1)

(2n + λ + 2)(2n + λ + 1)(n + λ)
a

(q)

n+1 = 1

2
a(q−1)

n q � 1 n � 1 (6)

where a(0)
n = an and (α)k = �(α+k)

�(α)
is the Pochhammer symbol.

Theorem 1.

DqP (α,β)
n (x) = 2−q(n + λ)q

n−q∑
i=0

Cn−q,i (α + q, β + q, α, β)P
(α,β)

i (x) (7)

where

Cn−q,i (α + q, β + q, α, β) = (n + q + λ)i(i + q + α + 1)n−i−q�(i + λ)

(n − i − q)!�(2i + λ)

× 3F2


 −n + q + i, n + i + q + λ, i + α + 1

; 1
i + q + α + 1, 2i + λ + 1


 .

Theorem 2.

a(q)
n = 2−q

∞∑
i=0

(n + i + q + λ − 1)qCn+i,n(α + q, β + q, α, β)an+i+q n � 0 q � 1 (8)

where

Cn+i,n(α + q, β + q, α, β) = (n + i + 2q + λ − 1)n(n + α + q + 1)i�(n + λ)

i!�(2n + λ)

× 3F2


 −i, 2n + i + 2q + λ, n + α + 1

; 1
n + q + α + 1, 2n + λ + 1


 .

Let b
(q)
n , q � 1, denote the Jacobi expansion coefficients of u(x), x ∈ [−1, 1], i.e.,

u(x) =
∞∑

n=0

b(q)
n P (α,β)

n (x) (9)

and let u(x) be an infinitely differentiable function, then we may express the �th derivative of
u(x) in the form

u(�)(x) =
∞∑

n=0

b(q−�)
n P (α,β)

n (x) � � 0 (10)

and in particular

u(q)(x) =
∞∑

n=0

bnP
(α,β)
n (x) bn = b(0)

n (11)

from (9) and (10) we can write
∞∑

n=0

b(q)
n

d

dx
P (α,β)

n (x) =
∞∑

n=0

b(q−1)
n P (α,β)

n (x) (12)
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then use of identity (5) with equation (12), leads to the recurrence relation

1

2
b(q)

n = (n + λ − 1)

(2n + λ − 2)(2n + λ − 1)
b

(q−1)

n−1 +
(α − β)

(2n + λ − 1)(2n + λ + 1)
b(q−1)

n

− (n + α + 1)(n + β + 1)

(n + λ)(2n + λ + 1)(2n + λ + 2)
b

(q−1)

n+1 q � 1 n � 1. (13)

Theorem 3. If we define the q times repeated integration of P
(α,β)
n (x) by

I (q,α,β)
n (x) =

∫ ∫ qtimes

· · ·
∫

P (α,β)
n (x) dx dx · · · dx (14)

then

I (q,α,β)
n (x) = 2q

(n − q + λ)q

n+q∑
k=q

Cn+q,k(α − q, β − q, α, β)P
(α,β)

k (x) + πq−1(x) (15)

q � 0, n � q + 1 for α = β = − 1
2 q � 0, n � q for α �= − 1

2 or β �= − 1
2

where

Cn+q,k(α − q, β − q, α, β) = (n − q + λ)k(k − q + α + 1)n−k+q�(k + λ)

(n − k + q)!�(2k + λ)

× 3F2


 −n − q + k, n + k − q + λ, k + α + 1

; 1
k − q + α + 1, 2k + λ + 1




and πq−1(x) is a polynomial of degree at most (q − 1).

Theorem 4. Let u(x) be an infinitely differentiable function defined on the interval [−1, 1].
Then the Jacobi coefficients b

(q)
n of u(x) are related to the Jacobi coefficients bn of the qth

derivative of u(x) by

b(q)
n = 2q

∞∑
j=0

bn+j−q

(n + j − 2q + λ)q
Cj+n,n(α − q, β − q, α, β) n � q. (16)

Remark 1. It is worth mentioning that we have demonstrated how the differentiated and
integrated expansions (4) and (9) can be applied to solve two-point boundary value problems
by using the spectral Galerkin method. The interested reader is referred to Doha (2002b,
2003a).

3. Jacobi coefficients of the moments of one single Jacobi polynomial of any degree

For the evaluation of Jacobi coefficients of the moments of high-order derivatives of infinitely
differentiable functions, the following theorem is needed.

Theorem 5.

xmP
(α,β)

j (x) =
2m∑
n=0

amn(j)P
(α,β)

j+m−n(x) m � 0 j � 0 (17)
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with P
(α,β)
−r (x) = 0, r � 1, where

amn(j) = (−1)n2j+m−nm!(2j + 2m − 2n + λ)�(j + m − n + λ)�(j + α + 1)�(j + β + 1)

�(j + m − n + α + 1)�(j + m − n + β + 1)�(j + λ)

×
min(j+m−n,j)∑
k=max(0,j−n)

(
j + m − n

k

)
�(j + k + λ)

2k(n + k − j)!�(3j + 2m − 2n − k + λ + 1)

×
j−k∑
�=0

(−1)��(2j + m − n − k − � + α + 1)�(j + m + � − n + β + 1)

�!(j − k − �)!�(j − � + α + 1)�(k + � + β + 1)

× 2F1(j − k − n, j + m + � − n + β + 1; 3j + 2m − 2n − k + λ + 1; 2). (18)

Proof. We use the induction principle to prove this theorem. In view of recurrence relation

xP
(α,β)

j (x) = 2(j + 1)(j + λ)

(2j + λ)(2j + λ + 1)
P

(α,β)

j+1 (x) − (α2 − β2)

(2j + λ − 1)(2j + λ + 1)
P

(α,β)

j (x)

+
2(j + α)(j + β)

(2j + λ − 1)(2j + λ)
P

(α,β)

j−1 (x) j � 0

we may write

xP
(α,β)(x)

j = a10(j)P
(α,β)

j+1 (x) + a11(j)P
(α,β)

j (x) + a12(j)P
(α,β)

j−1 (x) (19)

and this in turn shows that (17) is true for m = 1. Proceeding by induction, assuming that (17)
is valid for m, we want to prove that

xm+1P
(α,β)

j (x) =
2m+2∑
n=0

am+1,n(j)P
(α,β)

j+m−n+1(x). (20)

From (19) and assuming the validity of (17) for m, we have

xm+1P
(α,β)

j (x) =
2m∑
n=0

amn(j)
[
a10(j + m − n)P

(α,β)

j+m−n+1(x) + a11(j + m − n)P
(α,β)

j+m−n(x)

+ a12(j + m − n)P
(α,β)

j+m−n−1(x)
]
.

Collecting similar terms, we get

xm+1P
(α,β)

j (x) = am0(j)a10(j + m)P
(α,β)

j+m+1(x) + [am1(j)a10(j + m − 1)

+ am0(j)a11(j + m)]P (α,β)

j+m (x) +
2m∑
n=2

[amn(j)a10(j + m − n)

+ am,n−1(j)a11(j + m − n + 1) + am,n−2(j)a12(j + m − n + 2)]P (α,β)

j+m−n+1(x)

+ [am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)]P (α,β)

j−m (x)

+ am,2m(j)a12(j − m)P
(α,β)

j−m−1(x). (21)

It can be easily shown that

am+1,0(j) = am0(j)a10(j + m)

am+1,1(j) = am1(j)a10(j + m − 1) + am0(j)a11(j + m)

am+1,n(j) = amn(j)a10(j + m − n) + am,n−1(j)a11(j + m − n + 1)

+ am,n−2(j)a12(j + m − n + 2)

am+1,2m+1(j) = am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)

am+1,2m+2(j) = am,2m(j)a12(j − m)
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and accordingly, formula (21) becomes

xm+1P
(α,β)

j (x) =
2m+2∑
n=0

am+1,n(j)P
(α,β)

j+m−n+1(x)

which completes the induction and proves the theorem. �

Corollary 1. It can be easily shown that the expansion coefficients amn(j) of theorem 5 satisfy
the recurrence relation

amn(j) =
2∑

k=0

am−1,n+k−2(j)a1,2−k(j + m − n − k + 1) n = 0, 1, . . . , 2m (22)

where

a1k(j) =




2(j + 1)(j + λ)

(2j + λ)(2j + λ + 1)
k = 0

−(α2 − β2)

(2j + λ − 1)(2j + λ + 1)
k = 1 a00(j) = 1

2(j + α)(j + β)

(2j + λ − 1)(2j + λ)
k = 2

(23)

with

am−1,−�(j) = 0 ∀� � 0 am−1,r (j ) = 0 r = 2m − 1, 2m.

Corollary 2. It is not difficult to show that

xmP
(α,β)

j (x) =
j+m∑
n=0

am,j+m−n(j)P (α,β)
n (x) j � 0 m � 0 (24)

and

xm =
m∑

n=0

am,m−n(0)P (α,β)
n (x) m � 0 (25)

where

am,m−n(0) = (−1)m−n2nm!�(n + λ)

(m − n)!�(2n + λ)
2F1(−(m − n), n + β + 1; 2n + λ + 1; 2) (26)

which is in agreement with Luke (1975), p 440, formula (1).

Corollary 3. The expansion of xmC
(α)
j (x) in series of ultraspherical polynomials is given by

xmC
(α)
j (x) =

m+j∑
n=0

bm,j+m−n(j)C(α)
n (x) (27)

where

bm,j+m−n(j) = (−1)j+m−n2n+1j !m!(n + α)�(n + 2α)�
(
j + α + 1

2

)
n!�(j + 2α)�

(
n + α + 1

2

)

×
min(n,j)∑

k=max(0,n−m)

(n

k

) �(j + k + 2α)

2k(k + m − n)!�(j + 2n − k + 2α + 1)

×
j−k∑
�=0

(−1)��
(
j + n − k − � + α + 1

2

)
�

(
� + n + α + 1

2

)
�!(j − k − �)!�

(
j − � + α + 1

2

)
�

(
k + � + α + 1

2

)
× 2F1

(−(k + m − n), � + n + α + 1
2 ; j + 2n − k + 2α + 1; 2

)
.
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Proof. Expansion (27) follows directly from equation (24), as a special case, by taking α = β

and each is replaced by
(
α − 1

2

)
, then using relation (2). �

Remark 2. The expansions of xm Tj (x), xmUj(x) and xmPj (x) in series of Chebyshev
polynomials of the first and second kinds and of Legendre polynomials follow from
equation (27) by taking α = 0, 1 and 1

2 respectively.

Corollary 4. The expansion of x2r+ε in series of ultraspherical polynomials is given by

x2r+ε = (2r + ε)!�
(

1
2

)
22r+2α+ε−1�

(
α + 1

2

)
r∑

s=0

(2s + α + ε)�(2s + 2α + ε)

(r − s)!(2s + ε)!�(r + s + α + ε + 1)
C

(α)

2s+ε(x)

ε = 0, 1.

Proof. Set j = 0 in equation (27), and after performing some manipulation, we get

xm =
m∑

n=0

bm,m−n(0)C(α)
n (x) (28)

where

bm,m−n(0) = (−1)m−nm!�
(

1
2

)
�(n + 2α)

n!(m − n)!2n+2α−1�(n + α)�
(
α + 1

2

)

× 2F1

(
−(m − n), n + α +

1

2
; 2n + 2α + 1; 2

)
.

Taking into account that (Luke (1975), p 272, formulae (12) and (13))

2F1(−N, a; 2a; 2) =




0 for N odd(
1
2

)
N
2(

a + 1
2

)
N
2

for N even
(29)

for a �= 0,−1,−2, . . . , we see that bm,m−n(0) = 0 when (m − n) is odd, while

bm,m−n(0) = m!(n + α)�(n + 2α)�
(

m−n+1
2

)
n!(m − n)!2n+2α−1�

(
α + 1

2

)
�

(
m+n

2 + α + 1
) (m − n) even

which using the Legendre duplication formula

�(2z) = 22z−1�
(
z + 1

2

)
�(z)

�
(

1
2

)
can be written in the form

bm,m−n(0) = m!(n + α)�
(

1
2

)
�(n + 2α)

n!
(

m−n
2

)
!2m+2α−1�

(
α + 1

2

)
�

(
m+n

2 + α + 1
) (m − n) even.

Finally, writing m = 2r + ε, n = 2s + ε, where r, s are integers and ε = 0, 1 for m even and
odd respectively, expansion (28) reads in this case

x2r+ε = (2r + ε)!�
(

1
2

)
22r+2α+ε−1�

(
α + 1

2

)
r∑

s=0

(2s + α + ε)�(2s + 2α + ε)

(r − s)!(2s + ε)!�(r + s + α + ε + 1)
C

(α)

2s+ε(x)

and this completes the proof of the corollary. �

Remark 3. The expansion of xm in series of Chebyshev polynomials of the first kind Tn(x)

and of the second kind Un(x) and Legendre polynomials Pn(x) follows from equation (28)
directly by taking α = 0, 1 and 1

2 respectively.
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4. Jacobi coefficients of the moments of a general-order derivative of an infinitely
differentiable function

Under the assumptions of (4) and (17), and for a positive integer �, let

x� dqf (x)

dxq
= I q,� (30)

and if we write

I q,� =
∞∑
i=0

b
q,�

i P
(α,β)

i (x) (31)

then

Theorem 6

b
q,�

i =




∑�−1
k=0 a�,k+�−i (k)a

(q)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(q)

k+� 0 � i � �

∑�−1
k=i−� a�,k+�−i (k)a

(q)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(q)

k+� � + 1 � i � 2� − 1
∑i

k=i−2� a�,k+2�−i (k + �)a
(q)

k+� i � 2�.

(32)

Proof. Equations (7) and (17) and (30) give

I q,� =
∞∑

k=0

a
(q)

k

2�∑
j=0

a�,j (k)P
(α,β)

k+�−j (x). (33)

By letting i = k + � − j , then (33) may be written in the form

I q,� =
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x) +
∞∑

k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x)

=
∑

1

+
∑

2

(34)

where

∑
1

=
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x)

∑
2

=
∞∑

k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x).

Considering
∑

1 first,

∑
1

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x) +
�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)P
(α,β)

i (x)

=
∑

11

+
∑

12

. (35)

Clearly,

∑
11

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)P
(α,β)

i (x) =
�−1∑
k=0

a
(q)

k

�−k∑
i=1

a�,k+�+i(k)P
(α,β)

−i (x)
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hence ∑
11

= 0. (36)

Now,

∑
12

=
�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)P
(α,β)

i (x)

=
�∑

i=0

�−1∑
k=0

a
(q)

k a�,k+�−i (k)P
(α,β)

i (x) +
2�−1∑
i=�+1

�−1∑
k=i−�

a
(q)

k a�,k+�−i (k)P
(α,β)

i (x)

hence

∑
12

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k a�,k+�−i (k)P
(α,β)

i (x). (37)

Substitution of (36) and (37) into (35) yields

∑
1

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k a�,k+�−i (k)P
(α,β)

i (x). (38)

If when considering
∑

2, one takes k + � instead of k, then it is not difficult to show that

∑
2

=
∞∑
i=0

i∑
k=max(0,i−2�)

a
(q)

k+�a�,k+2�−i (k + �)P
(α,β)

i (x). (39)

Substitution of (38) and (39) into (34) gives the required results of (32) and completes the
proof of theorem 6. �

5. Recurrence relations for connection coefficients between different Jacobi polynomials

In this section we consider the problem of determining the connection coefficients between
different polynomial systems. Suppose V is a vector space of all polynomials over the real
or complex numbers and Vm is the subspace of polynomials of degree less than or equal to
m. Suppose p0(x), p1(x), p2(x), . . . is a sequence of polynomials such that pn(x) is of exact
degree n; let q0(x), q1(x), q2(x), . . . be another such sequence. Clearly, these sequences form
a basis for V . It is also evident that p0(x), p1(x), . . . , pm(x) and q0(x), q1(x), . . . , qm(x) give
two bases for Vm. While working with finite-dimensional vector spaces, it is often necessary
to find the matrix that transforms a basis of a given space to another basis. This means that
one is interested in the connection coefficients ai(n) that satisfy

qn(x) =
n∑

i=0

ai(n)pi(x). (40)

The choice of pn(x) and qn(x) depends on the situation. For example, suppose

pn(x) = xn qn(x) = x(x − 1) · · · (x − n + 1) = (−1)n(−x)n = �(x + 1)

�(x − n + 1)

then the connection coefficients ai(n) are Stirling numbers of the first kind. If the roles of
these pn(x) and qn(x) are interchanged, then we get Stirling numbers of the second kind.
These numbers are useful in some combinatorial polynomials (see Abramowitz and Stegun
(1970), pp 824–5).
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The connection coefficients between many of the classical orthogonal polynomial systems
have been determined by different kinds of methods (see, e.g., Szegö (1985), Rainville (1960),
Andrews et al (1999)). The aim of this section is to describe a simple procedure (based on the
results of theorem 6) in order to find recurrence relations, sometimes easy to solve, between
the coefficients ai(n) when pi(x) = P

(γ,δ)

i (x) and qi(x) = P
(α,β)

i (x), where P
(.,.)
i (x) are the

Jacobi orthogonal polynomials. This gives an alternative and different way to compare the
approaches of Askey and Gasper (1971), Ronveaux et al (1995, 1996), Area et al (1998),
Godoy et al (1997), Koepf and Schmersau (1998), Lewanowicz (2002), Lewanowicz and
Woźny (2001), Lewanowicz et al (2000), Sánchez-Ruiz and Dehesa (1998). A nonrecursive
way to approach the problem in the case of classical orthogonal polynomials of discrete
variable can be found in Gasper (1974). Moreover, other authors have considered the problem
from a recursive point of view (see Koepf and Schmersau (1988)), or even in classical discrete
and q-analogues (cf Álvarez-Nodarse et al (1998), Álvarez-Nodarse and Ronveaux (1996)).
Since the connection coefficients ai(n) depend on two parameters i and n, the most interesting
recurrence relations are those which leave one of the parameters fixed. The success of our
procedure depends heavily on whether or not these recurrence relations are of minimal order,
i.e. the shortest ones in order. In cases when the order of the resulting recurrence relation is
1, it defines a hypergeometric term which can be given explicitly in terms of the Pochhammer
symbol (a)k = �(a+k)

�(a)
.

5.1. The Jacobi–Jacobi connection problem

The link between P
(γ,δ)
n (x) and P

(α,β)

i (x) given by (40) can easily be replaced by a linear
relation involving only P

(α,β)

i (x) using the Jacobi differential equation, namely

(1 − x2)D2P (γ,δ)
n (x) + [δ − γ − (2 + δ + γ )x]DP(γ,δ)

n (x) + n(1 + γ + δ + n)P (γ,δ)
n (x) = 0

(41)

by substituting

P (γ,δ)
n (x) =

∞∑
i=0

ai(n)P
(α,β)

i (x) (42)

with an+1(n) = an+2(n) = · · · = 0. By virtue of formulae (30) and (31), equation (42) takes
the form

I 2,0 − I 2,2 − (2 + γ + δ)I 1,1 + (δ − γ )I 1,0 + n(1 + γ + δ + n)I 0,0 = 0

or

b
2,0
i − b

2,2
i − (2 + γ + δ)b

1,1
i + (δ − γ )b

1,0
i + n(1 + γ + δ + n)b

0,0
i = 0. (43)

Formula (32) gives

b
2,0
i = a

(2)
i (n) b

1,0
i = a

(1)
i (n) b

0,0
i = ai(n) i � 0 (44)

b
1,1
i =

i∑
k=i−2

a1,k+2−i (k + 1)a
(1)

k+1(n) b
2,2
i =

i∑
k=i−4

a2,k+4−i (k + 2)a
(2)

k+2(n) i � 0.

(45)

Substitution of relations (44) and (45) into (43), and making use of formulae (8) and (18)—after
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some manipulation—yields the following recurrence relation:

2(n − i)(i + λ)(i + λ + 1)(n + i + γ + δ + 1)

(2i + λ)(2i + λ + 1)
ai(n)

= (i + λ + 1)

{
γ − δ + β − α +

(β − α)(λ + 1)(γ + δ − α − β)

(2i + λ + 1)(2i + λ + 3)

+
2(β − α)[n(n + γ + δ + 1) − (i + 1)(i + λ + 1)]

(2i + λ + 1)(2i + λ + 3)

}
ai+1(n)

+
2(i + α + 2)(i + β + 2)(n − i + γ + δ − λ − 1)(n + i + λ + 2)

(2i + λ + 3)(2i + λ + 4)
ai+2(n)

i = n − 1, n − 2, . . . , 0 (46)

which is of order 2. It is to be noted here that the second-order recurrence relation (46)
generates the coefficients ai(n) = ai(n; α, β, γ, δ) of (42) by recurring backwards with the
initial conditions given by

an+1(n) = an+2(n) = 0 and an(n) = �(n + λ)�(2n + γ + δ + 1)

�(2n + λ)�(n + γ + δ + 1)
.

The coefficient an(n), which only depends on the relative normalization of P
(γ,δ)
n (x) and

P
(α,β)
n (x), has been easily obtained by identification of the highest power in expansion (42).

The solution of (46) is

ai(n; α, β, γ, δ) = �(n + γ + 1)�(i + λ)�(n + i + γ + δ + 1)

�(i + γ + 1)�(n + γ + δ + 1)�(2i + λ)(n − i)!
× 3F2(−(n − i), i + α + 1, n + i + γ + δ + 1; i + γ + 1, 2i + λ + 1; 1) (47)

which is in complete agreement with that given in Andrews et al (1999), p 357.
If we take γ = α, then the 3F2 reduces to a terminating 2F1, which can be evaluated by

the Chu–Vandemonde formula

2F1(−n, a, c; 1) = (c − a)n

(c)n
.

The 3F2 can be again summed if δ = β. Since in this case we get a balanced 3F2 whose value
is given by a Pfaff–Saalschütz identity

3F2(−n, a, b; c, 1 + a + b − c − n; 1) = (c − a)n(c − b)n

n!(c)n
.

Corollary 5. In this connection problem (γ = α)

P (α,δ)
n (x) =

n∑
i=0

ai(n)P
(α,β)

i (x) (48)

the coefficients ai(n) are given by

ai(n) = (−1)n−i(α + 1)n(δ − β)n−i(λ)i(2i + λ)(α + δ + n + 1)i

(n − i)!(α + 1)i(λ)n+1(n + λ + 1)i
. (49)

Corollary 6. In this connection problem (δ = β)

P (γ,β)
n (x) =

n∑
i=0

ai(n)P
(α,β)

i (x) (50)
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the coefficients ai(n) are given by

ai(n) = (2i + λ)(β + 1)n(λ)i(n + β + γ + 1)i(γ − α)n−i

(n − i)!(β + 1)i(λ)n+1(n + λ + 1)i
. (51)

Corollary 7. In this connection problem (δ = γ, β = α)

P (γ,γ )
n (x) =

n∑
i=0

ai(n)P
(α,α)

i (x) (52)

the coefficients ai(n) are given by

ai(n) =
(γ + 1)n(2α + 1)i

(
γ + 1

2

)
n+i
2

(
α + 3

2

)
i
(γ − α) n−i

2

(2γ + 1)n(α + 1)i
(
α + 1

2

)
i

(
α + 3

2

)
n+i
2

(
n−i

2

)
!

(n − i) even. (53)

5.2. The ultraspherical–ultraspherical connection problem

The link between C(ν)
n (x) and C

(µ)

i (x) can be easily obtained by taking γ = δ = ν − 1
2 , α =

β = µ − 1
2 in (42) and returning to relation (2), to get the connection problem

C(ν)
n (x) =

n∑
i=0

bi(n)C
(µ)

i (x) (54)

where

bi(n) = n!�
(
ν + 1

2

)
�

(
i + µ + 1

2

)
i!�

(
µ + 1

2

)
�

(
n + ν + 1

2

)ai(n)

and ai(n) satisfy the second-order recurrence relation

(n − i)(i + 2µ)(i + 2µ + 1)(n + i + 2ν)

(i + µ)(2i + 2µ + 1)
ai(n)

+

(
i + µ + 3

2

)2
(n − i + 2ν − 2µ − 2)(n + i + 2µ + 2)

(i + µ + 2)(2i + 2µ + 3)
ai+2(n) = 0

with the initial conditions

an+1(n) = an+2(n) = 0 and an(n) = �(n + 2µ)�(2n + 2ν)

�(n + 2ν)�(2n + 2µ)
.

The bi(n) coefficients are given by

bi(n) =
n!(ν) n+i

2
(ν − µ) n−i

2
(i + µ)(2µ)i

i!(2ν)n(µ) n+i+2
2

(
n−i

2

)
!

(n − i) even. (55)

It is worth noting that all the connection problems between Chebyshev polynomials of
the first and second kinds and Legendre polynomials can be easily deduced by taking suitable
values of the two parameters µ and ν in relations (54) and (55).

5.3. The Laguerre–Jacobi connection problem

In this problem

L(γ )
n (x) =

n∑
i=0

ai(n)P
(α,β)

i (x) (56)
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when L
(γ )
n (x) are Laguerre polynomials, which satisfy the differential equation

xD2L(γ )
n (x) + (1 + γ − x)DL(γ )

n (x) + nL(γ )
n (x) = 0.

The coefficients ai(n) satisfy the fourth-order recurrence relation

αinai(n) + βinai+1(n) + γinai+2(n) + δinai+3(n) + ηinai+4(n) = 0 i = n − 1, n − 2, . . . , 0

(57)

where

αin = (n − i)

3∏
j=0

(
i + λ + j

2i + λ + j

)

βin = (i + λ + 1)(i + λ + 2)

[
i(i + λ − 1)

2(2i + λ − 2)(2i + λ − 1)
+

(1 + γ )(i + λ + 3)

2(2i + λ + 2)(2i + λ + 3)

+
(α − β)(4n − 2i + λ + 1)(i + λ + 3)

2(2i + λ + 1)(2i + λ + 2)(2i + λ + 3)(2i + λ + 5)

]

γin = (i + λ + 2)(i + λ + 3)

[
(β2 − α2)

4(2i + λ − 1)(2i + λ + 1)
+

(α − β)

(2i + λ + 3)(2i + λ + 5)

×
{

1 + γ

2
+

(α − β)(2n + λ + 1)

2(2i + λ + 3)(2i + λ + 5)

}
− (n + i + λ + 2)(i + α + 2)(i + β + 2)

(2i + λ + 2)(2i + λ + 3)2(2i + λ + 4)

− (n − i − 2)(i + α + 3)(i + β + 3)

(2i + λ + 4)(2i + λ + 5)2(2i + λ + 6)

]

δin = (i + λ + 3)

[
(i + α + 1)(i + β + 1)(i + β + 4)

2(2i + λ + 1)(2i + λ + 2)
− (1 + γ )(i + α + 3)(i + β + 3)

2(2i + λ + 5)(2i + λ + 6)

− (α − β)(i + α + 3)(i + β + 3)(4n + 2j + 3λ + 9)

2(2i + λ + 3)(2i + λ + 5)(2i + λ + 6)(2i + λ + 7)

]

ηin = (i + α + 3)(i + β + 3)(i + α + 4)(i + β + 4)(n + i + λ + 4)

(2i + λ + 5)(2i + λ + 6)(2i + λ + 7)(2i + λ + 8)

with an+s(n) = 0, s = 1, 2, 3, 4 and an(n) = (−1)n2n�(n+λ)

�(2n+λ)
. The solution of (57) is

ai(n, α, β, γ ) = (−1)i2i�(i + λ)(1 + γ )n

�(2i + λ)

n∑
k=i

1

(n − k)!(k − i)!(1 + γ )k

× 2F1(−(k − i), i + β + 1; 2i + λ + 1; 2). (58)

Corollary 8. The link between Laguerre-ultraspherical connection problem is given by

L(γ )
n (x) =

n∑
i=0

bi(n)C
(α)
i (x) (59)

where

bi(n) = (−1)i(2α)i(1 + γ )n

2i i!(α)i

n∑
k=i

(k−i)even

(
1
2

)
k−i

2

(n − k)!(k − i)!(1 + γ )k(i + α + 1) k−i
2

. (60)

Proof. If we take α = β and each is replaced by
(
α − 1

2

)
, then the 2F1 in (58) can be evaluated

by formula (29). In this particular case, relations (2) and (56) give immediately relation (59),
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where

bi(n) = �
(
i + α + 1

2

)
i!�

(
α + 1

2

) ai

(
n, α − 1

2
, α − 1

2
, γ

)

and this with (58) and (29) enables one to get the required formula for bi(n) given by (60).
�

5.4. The Hermite–Jacobi connection problem

In this problem

Hn(x) =
n∑

i=0

ai(n)P
(α,β)

i (x) (61)

where Hn(x) are Hermite polynomials, which satisfy the differential equation

D2Hn(x) − 2xDHn(x) + 2nHn(x) = 0.

The coefficients ai(n) satisfy the fourth-order recurrence relation

αinai(n) + βinai+1(n) + γinai+2(n) + δinai+3(n) + ηinai+4(n) = 0 i = n − 1, n − 2, . . . , 0

(62)

where

αin = (n − i)

3∏
j=0

(
i + λ + j

2i + λ + j

)

βin = (α − β)(2i − 4n − λ − 1)

(2i + λ + 5)

2∏
j=1

(
i + λ + j

2i + λ + j

)

γin = (i + λ + 2)(i + λ + 3)

×
[

1

4
− (2n + λ + 2)(2i2 + 2i(λ + 4) + α(5 + 4β) + β(5 − β) − α2 − 12)

(2i + λ + 2)(2i + λ + 3)(2i + λ + 5)(2i + λ + 6)

]

δin = −(α − β)(i + α + 3)(i + β + 3)(i + λ + 3)(4n + 2i + 3λ + 9)

(2i + λ + 3)(2i + λ + 5)(2i + λ + 6)(2i + λ + 7)

ηin = 2(i + α + 3)(i + β + 3)(i + α + 4)(i + β + 4)(n + i + λ + 4)

(2i + λ + 5)(2i + λ + 6)(2i + λ + 7)(2i + λ + 8)

with an+s(n) = 0, s = 1, 2, 3, 4 and an(n) = 22nn!(λ)n
(λ)2n

. The solution of (62) is

(i) for n even

ai(n) = (−1)i2i(2n)!�(i + λ)

�(2i + λ)

n∑
j=0

(−1)j22j

(n − j)!(2j − i)!

× 2F1(−(2j − i), i + β + 1; 2i + λ + 1; 2)

(ii) for n odd

ai(n) = (−1)i2i+1(2n + 1)!�(i + λ)

�(2i + λ)

n∑
j=0

(−1)j22j

(n − j)!(2j − i + 1)!

× 2F1(−(2j − i + 1), i + β + 1; 2i + λ + 1; 2).
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6. Application to ordinary differential equations with varying coefficients

Let f (x) be an infinitely differentiable function defined on [−1, 1], and have the Jacobi
expansion (3), and assume that it satisfies the linear nonhomogeneous differential equation of
order n

n∑
i=0

pi(x)f (i)(x) = p(x) (63)

where p0, p1, . . . , (pn(x) �= 0) are polynomials of x, and the coefficients of the Jacobi series
of the function p(x) are known, formulae (8), (17) and (32) enable one to construct in view of
equation (63) the linear recurrence relation of order r, namely

r∑
j=0

αj (k)ak+j = β(k) k � 0 (64)

where α0, α1, . . . , αr (α0 �= 0, αr �= 0) are polynomials of the variable k. An analytical
solution of (64)—such as those given for (46), (57) and (62)—is not generally easy to obtain.
The alternative approach for solving (64) can be obtained by using the well-known methods
of Miller and Oliver as well as modifications and generalizations of these methods (see Jirari
(1995), Luke (1969), Oliver (1969), Scraton (1972), Wimp (1984), Weixlbaumer (2001)).

Remark 4. It is of fundamental importance to note that the recurrence relations (46), (57) and
(62) are minimal (i.e. the shortest in order) for the connection coefficients in (42), (56) and
(61). This minimality is concluded in the connection problems considered just because they
coincide with those given in Godoy et al (1997), displayed in table 1, p 263.

Remark 5. It should be mentioned that our goal here is to emphasize the systematic character
and simplicity of our algorithm, which allows one to implement it in any computer algebra
(here the Mathematica (1999) symbolic language has been used).

To end this paper, we wish to report that this work deals with formulae associated with the
Jacobi coefficients for the moments of a general-order derivative of differentiable functions
and with the connection coefficients between Jacobi–Jacobi and ultraspherical–ultraspherical
and other combinations with different parameters. These formulae can be used to facilitate
greatly the setting up of algebraic systems to be obtained by applying the spectral methods
for solving differential equations with polynomial coefficients of any order, which we hope to
report in a forthcoming paper.
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